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We present low-temperature transport measurements in one-dimensional Josephson junctions rhombi chains.
We have measured the current-phase relation of a chain of eight rhombi. The junctions are either in the
classical phase regime with the Josephson energy much larger than the charging energy, EJ�EC, or in the
quantum phase regime where EJ /EC�2. In the strong Josephson coupling regime �EJ�EC�kBT� we observe
a sawtoothlike supercurrent as a function of the phase difference over the chain. The period of the supercurrent
oscillations changes abruptly from one flux quantum �0 to half the flux quantum �0 /2 as the rhombi are tuned
in the vicinity of full frustration. The main observed features can be understood from the complex energy
ground state of the chain. For EJ /EC�2, we do observe a dramatic suppression and rounding of the switching
current dependence which we found to be consistent with the model developed by Matveev et al. �Phys. Rev.
Lett. 89, 096802 �2002�� for long Josephson junctions chains.
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I. INTRODUCTION

Arrays of small Josephson junctions exhibit a variety of
quantum states controlled by lattice geometry and magnetic
frustration.1 A particularly interesting situation occurs in sys-
tems with highly degenerate classical ground states where
nontrivial quantum states have been proposed in the search
for topologically protected qubit states.2 The building block
for such a system is a rhombus with four Josephson junctions
and the simplest system is the linear chain of rhombi as
proposed by Douçot and Vidal3 along the line of the so-
called Aharonov-Bohm cages.4 The main consequence of the
Aharonov-Bohm cages in the rhombi array is the destruction
of the �2e� supercurrent when the transverse magnetic flux
through one rhombus is exactly half a superconducting flux
quantum. This destructive interference is reminiscent of the
localization effect predicted for non interacting charges in4

and considered experimentally in both superconducting
networks5 and quantum wires.6 Interestingly, a finite super-
current carried by correlated pairs of Cooper pairs �carrying
a charge of 4e� was predicted to subsist in the case of Jo-
sephson junctions with small capacitances.3

In experimentally relevant situations, the junctions’ ca-
pacitances are larger than the ground capacitances of the is-
lands between the junctions. The supercurrent flowing in a
linear chain was predicted to be dramatically suppressed,
even in chains of rather strong Josephson junctions,7 because
of the large probability of quantum phase slip events along
the chain. As a result, it is expected that the supercurrent
through a phase-biased rhombi chain should be exponentially
small.

Protopopov and Feigelman8,9 have studied the equilibrium
supercurrent in frustrated rhombi chains. They have made
quantitative predictions for the magnitude of both, the 2e and
the 4e supercurrents, as a function of the relevant practical
parameters: magnetic flux, ratio of Josephson to Coulomb
energy, chain length and quenched disorder. Recently, Glad-
chenko et al.10 reported on the first observation of the coher-

ent transport of pairs of Cooper pairs in a small size rhombi
array in the quantum regime.

Whether the chain is in the classical or in the quantum
regime is set by the ratio between the Josephson energy EJ

= ic
�

2e and the charging energy EC= e2

2C of the junctions. In
this paper we present measurements of the current-phase re-
lation for long Josephson junctions rhombi chains �N=8
rhombi�, carried out either in the classical phase regime with
the Josephson energy much larger than the charge energy,
EJ�EC, or in the quantum phase regime where EJ /EC�2.
In order to measure the current-phase relation, we shunted
the rhombi chain with a high critical current Josephson junc-
tion and measured its switching current as a function of the
magnetic flux for different rhombus frustrations.

In Sec. II we present the theory describing the states and
the energy bands for a rhombi chain in the classical limit.
This theory is used later in Sec. V in order to understand the
measurements of the current-phase relation in classical
chains. In Sec. III we begin by a general overview of the
phenomena occurring in the presence of charging effects.
Second we present a theoretical description of quantum fluc-
tuations based on a tight-binding Hamiltonian for the non-
frustrated regime. Sec. IV presents the sample fabrication
and characterization. Sec. V is devoted to the current-phase
relation measurements in the classical regime where EJ /EC
�20. These results can be understood from the shape of the
lowest energy band, whose periodicity changes, as expected,
from h /2e at small frustration to h /4e near full frustration.
The corresponding measurements in the quantum limit for
EJ /EC�2 as well as a detailed quantitative comparison to
the theory are presented in Sec. VI. Finally, in the Appendix,
we analyze the current-voltage characteristics of open chains
where the total phase is not constrained.

II. CLASSICAL ENERGY STATES OF RHOMBI CHAINS

We are interested in the current-phase relation IS��� of a
rhombi chain for different rhombus frustrations f =�r /�0.
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�r represents the magnetic flux inside one rhombus and
�0= h

2e is the superconducting flux quantum. The phase dif-
ference � over the chain is fixed by introducing the rhombi
chain into a superconducting loop threaded by a magnetic
flux �c=�0� /2�.11 The Josephson junctions circuit and the
notations that we will further refer to are represented in Fig.
1.

In this section we discuss the case where charging effects
are negligible, and therefore the superconducting phase is a
classical variable. The classical states of one rhombus which
depend on the diagonal phase difference � and on the frus-
tration f are introduced in Sec. II A. In Sec. II B we extend
the classical description of the energy states to a chain con-
taining N rhombi. In this case the energy band depends again
on the frustration f and the phase difference � over the whole
chain.

A. Single rhombus

We consider a single rhombus made of four identical Jo-
sephson junctions �Fig. 1�b�� with Josephson energy EJ and
critical current ic= 2e

� EJ.
Neglecting additional terms due to inductances, the poten-

tial energy of one rhombus containing four identical junc-
tions, is simply given by the sum of the Josephson energies
of the four junctions:

E�	1,	2,	3,	4� = �
n=1

4

EJ�1 − cos 	n� . �1�

The sum of the phases 	n is fixed by the flux inside the
rhombus:

� 	n = 2�f . �2�

Using the notations defined earlier, the ground-state energy
of one rhombus, in the classical regime �EJ�EC�, is found
by minimizing the energy �Eq. �1�� and depends on the pa-
rameters � and f:

E��, f�/EJ = 4 − 2��cos��/2 + �f/2�� + �cos��/2 − �f/2��� .

�3�

A complete description of the phase diagram for one
rhombus is given in Fig. 2. The circular current in the super-
conducting ring is ip�� , f�= 2e

�
�E��,f�

�f and it is 2� periodic in �
and f �Fig. 2�d��. The supercurrent through one rhombus is
given by is�� , f�= 2e

�
�E��,f�

�� and it is shown in Fig. 2�c�.
The interesting feature about this system is the change

from 2� to � periodicity as a function of the bias phase �
over the rhombus when the frustration f changes from 0 to
1/2. This property does not exist in the case of a dc super-
conducting quantum interference device �SQUID�, as there is
no modulation of the energy as a function of � at full frus-
tration. At f =1 /2 the rhombus has two classical ground
states, �=0,��mod 2��, denoted in analogy to the z projec-
tion of the spin 1

2 by �↓ � and �↑ �, respectively. These two
states have the same energy E��=0, f =0.5�=E��=� , f
=0.5�=2�2−	2�EJ but opposite persistent currents �see Fig.
2�d��. In the case of a current biased rhombus, the phase � is
controlled via the current-phase relation of a single rhombus
is�� , f�= 2e

�
�E��,f�

�� by the external current. The critical current
of a single rhombus is given by the maximum supercurrent
through the rhombus for a given frustration f:Ic

=max�is���� f=const=max� 2e
�

�E��,f�
�� � f=const. It is periodic in f and

varies from a maximum of 2ic down to ic. For −1 /2
 f

1 /2 it reads:

Ic = 2ic cos2�f

2
. �4�

B. Rhombi chain

In order to understand the classical states of the chain we
can start our analysis with the case where each rhombus has
a well defined diagonal phase difference across it. For a
closed chain of N identical rhombi, the sum of all the diag-
onal phase differences �n is fixed by the magnetic flux �c to
a total phase difference � over the chain �see Fig. 1�a��.

�
n=1

N

�n = � . �5�

In the region where the frustration, 0
 f �1, is small we
obtain by minimizing the total energy that the diagonal phase

FIG. 1. �Color online� The different notations used in the text for the �a� rhombi chain and for �b� one rhombus. Each red cross represents
a Josephson junction. The lines represent superconducting wires and the arrows represent gage invariant phase differences. The magnetic flux
�c inside the superconducting ring containing the rhombi chain fixes the phase difference across the chain to �=2��c /�0.11 The phase
differences over each of the four junctions in one rhombus are denoted by 	n where n=1,2 ,3 ,4. The gage-invariant phase � will be referred
as the diagonal phase difference. �r represents the magnetic flux inside one rhombus and the frustration parameter of the rhombus is given
by f =�r /�0.
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differences over each rhombus are identical up to a constant
multiple of 2�. The phase difference across the diagonal of
the nth rhombus in the state �m� is given by

�n =
� − 2�m

N
+ 2�mn, m = �

n

mn, �6�

where m is the number of vortices inside the superconducting
loop that contains the rhombi chain, and mn is an integer
corresponding to the number of vortices that crossed the nth
rhombus. Therefore the ground energy of the chain is N
times the energy of a single rhombus:

E��, f�/EJ = N
4 − 2��cos��� − 2�m�/2N + �f/2���

+ �cos��� − 2�m�/2N − �f/2��� �7�

At f =0 and in the limit N�1 the expression above can be
developed around zero. The energies of the low-lying states
are given by

Em��� =
EJ

2N
�� − 2�m�2. �8�

The ground-state energy consists of a series of shifted
arcs, with period 2� as shown in Fig. 3�a�. In analogy to a
single rhombus, at small frustration all rhombi of the chain
are in the �↓ � state �see Fig. 2�. The supercurrent through the
chain is given by the derivative of the ground-state energy
with respect to �, IS�� , f�= 2e

�
�E��,f�

�� . Therefore the current-
phase relation of an unfrustrated chain, in the classical re-
gime, is a 2�-periodic sawtooth function as for a single
rhombus. But in contrast to a single rhombus the critical
current of a chain with large N is approximately N times
smaller than the critical current of a single junction. The
value for the critical current of the chain ic

�
N can be easily

calculated from the energy expansion �8�.
As f approaches 1/2, the total energy can be reduced by

flipping the spin state of one rhombus. The chain with N
−1 rhombi in the �↓ � state and one rhombus in the �↑ � state
becomes energetically more favorable near �=��mod 2�� as
shown in Fig. 3�a�. Thus the energy diagram consists of an
alternate sequence of arcs, centered, respectively, at even and
odd multiples of �. At full frustration f =1 /2, the period as a
function of � turns to � �Fig. 3�a� upper trace�. Here, the

(a)

(b)

(c) (d)

FIG. 2. �Color online� Classical states of a single rhombus. �a� The ground-state energy as a function of the diagonal phase difference �
over the rhombus for three different frustrations f =0, 1/4 and 1/2. The inset shows the two possible persistent current states: a clockwise
flowing supercurrent �blue lines� and a counterclockwise supercurrent �red line�. �b� three-dimensional �3D� plot showing the lowest energy
band as a function of � and f . �c� Two-dimensional plot for the supercurrent across one rhombus. The amplitude and sign of the supercurrent
is illustrated by the background color: orange �positive values� for currents flowing from left to right and violet �negative values� for currents
from right to left. �d� Two-dimensional plot for the amplitude and the direction of the persistent current around the ring. The clockwise
current states, denoted �↓ �, are represented in blue, the counterclockwise current states, denoted �↑ �, in red. At full frustration �f =0.5� the
ground state is degenerate for �= �� /2, and the two eigenstates differ by the sign of the persistent current.
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energy modulation �2

8N	2
EJ and the maximum supercurrent

Is= ic
�

2	2N
are significantly weaker than at zero frustration.

The crossover point between these two regimes is defined as
the minimum frustration that induces at �=� a flip from the
�↓ � state to the �↑ � state for one single rhombus in the chain.
In Fig. 3�b� we represented the state of the system for f
slightly larger than the crossover frustration. For large N the
width of the frustration window scales with 1 /N and can be
approximated by the condition

1 − tan
�f

2


�2

8N
. �9�

Within this window, the supercurrent is expected to show
a complex sawtooth variation as a function of the phase �
with unequal current steps. It is interesting to discuss in more

details the structure of the chain states in the vicinity of the
full frustration region. In Ref. 8 it has been shown that near
f =0.5 the energy of the different possible chain states can be
approximated by the formula

Em,Sz��� �
EJ

	2

4N
�� + N�/2 + �Sz − 2�m�2

− 	2�SzEJ + const, �10�

where �=2�f −�. Here Sz=− 1
2 �sign�sin��n�� corresponds to

the z projection of the total spin S describing the whole
rhombi chain. Figure 3�d� shows the energy diagram for the
lowest energy chain states with N=8 in order to highlight the
topological distinctions between branches with minima at
even and odd values of � /�. Near �=0 the ground state is
obtained when all the rhombi are in the �↓ � state. Near the

FIG. 3. �Color online� �a� Ground state energy of a classical eight rhombi chain as a function of the phase �, for �a� zero, �b� intermediate,
and �c� full frustration. The plot colors correspond to the �↓ � state �blue� and �↑ � state �red�. The supercurrent flowing through the chain is
given by the derivative of the energy as a function of � and consists of a series of unequal sawtooth in the vicinity of f =1 /2. �d�
Identification of the lowest energy states of the chain near full frustration �f =0.495�. The up and down arrows indicate the spin states of the
eight rhombi. Note the change in the parity for the number of switched rhombi between successive minima.
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next minimum, one rhombus has flipped into the �↑ � state.
For the higher energy levels one can conclude in general that
at even values of � /�, chain states containing an even num-
ber of rhombi in the �↑ � state �so-called even states� show a
minimum. At odd values of � /� chain states with an odd
number of rhombi in the �↑ � state �so-called odd states� show
a minimum. At full frustration f =1 /2 all chain states with an
even and odd number of flipped rhombi become, respec-
tively, degenerate. Complete degeneracy is achieved at full
frustration at �=� /2; even and odd states have the same
energy.

In conclusion, the current-phase relation of the rhombi
chain in the classical regime should follow a sawtoothlike
function with a slowly varying amplitude as a function of the
frustration except for a small region around f =0.5. Inside
this so-called frustration window the periodicity of the saw-
tooth should double and its amplitude should drop by a fac-
tor of 2	2. In Sec. V we present measurements that precisely
confirm these predictions.

III. QUANTUM ENERGY STATES OF RHOMBI CHAINS

In this section we will discuss the influence of charging
effects on the current-phase relation of the rhombi chain.
Section III A offers a qualitative overview of the expected
phenomena when quantum fluctuations are not negligible.
Section III B is devoted to a quantitative analysis in the re-
gion f =0. We develop a tight-binding model proposed ini-
tially by Matveev et al.7 for a Josephson junctions chain.
This theoretical model will successfully fit our measurements
presented in Sec. VI.

A. Quantum phase slips

Quantum fluctuations start to play a role when the charg-
ing energy EC cannot be neglected anymore in comparison to

the Josephson energy EJ. Quantum fluctuations induce quan-
tum phase slips. For quantum junctions at very low tempera-
ture the role of quantum phase slips is twofold. First, phase
slip events, even rare, allow the system to tunnel through the
energy barriers which separate the local minimums and to
reach the ground states discussed above. On the other hand
phase slips induce quantum coupling between different states
and lead to the formation of macroscopic quantum states
extended over the whole chain.3,7,8 This superposition of
states lifts the high degeneracy of the classical states. In the
case of important quantum fluctuations, the crossing points
between different states shown in Fig. 3 become anticrossing
points, strongly modifying the physical properties of the sys-
tem �see Fig. 4�. The rate of phase slips depends on the
height and shape of the energy barrier which is set by the
ratio EJ /EC. We choose to focus our attention on two ex-
treme cases: EJ�EC �classical regime� where there are prac-
tically no phase fluctuations and EJ /EC�2 �quantum re-
gime� where the quantum fluctuations open a significant gap
between the classical states at the crossing points.

The frustrated and nonfrustrated regime involve different
kinds of tenneling processes: At f =0 �see Fig. 3�a�� or when
f is outside the window defined by Eq. �9�, the energy states
cross each other at �=� �modulo 2��. The necessary 2�
jump can be achieved by simultaneous phase slips events in
two junctions of one rhombus �one junction in each branch�.
At f =0, the simplest path corresponds to a sinusoidal energy
barrier of 4EJ as shown in Fig. 5. The rhombi chain can be
treated like a Josephson junctions chain considered by
Matveev et al.,7 except that, here, the tunnel amplitude for
quantum phase slips �v� involves the simultaneous phase slip
on two junctions. We have calculated this tunnel amplitude
in the case of a rhombus and Sec. III B presents a detailed
description of the tight-binding model that we used to fit our
experimental results in the quantum regime at f =0.

Qualitatively, when quantum fluctuations are large
enough, one expects a rounding of the sawtoothlike 2e su-

FIG. 4. Energy bands of the rhombi chain in the presence of quantum fluctuations. �a� Energy bands of an almost classical chain near full
frustration �f =0.495�. In this regime quantum phase slips mix the degenerate classical levels and lead to the appearance of avoided level
crossings. �b� First two energy bands of the quantum chain at full frustration �f =0.5�. Deep in the quantum regime fluctuations mix a lot of
different classical levels and the spectrum is no longer piecewise parabolic. The precise form of the spectrum can be calculated on the basis
of the Eq. �16� of Ref. 8. Figure 4�b� was generated by taking EJ /EC=6.
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percurrent turning eventually to a sinusoidal current of expo-
nentially small amplitude, as predicted in Ref. 7. At finite
frustration, the tunnel path is flux dependent and involves
more complex trajectories in the multidimensional energy
landscape. The tunnel amplitude will presumably be in-
creased.

Near f =1 /2, the successive energy minima as a function
of � have periodicity �. The corresponding chain states dif-
fer by the sign of the persistent current in one rhombus. Here
the transition requires a phase jump of � across one rhom-
bus. The energy barrier for this process can be approximated
by considering a path in the parameter space where a single
junction switches by 2�. In this case the energy barrier is
close to a sinusoidal barrier with height 2�	2−1�EJ, i.e.
0.414 times the energy barrier for a single junction.

B. Quantum fluctuations of the rhombi chain at zero magnetic
field

In the region where the frustration is small, 0
 f �1, the
theory we develop here is just a slight modification of the
analysis carried out in Ref. 7. for a chain of single Josephson
junctions. The reason for this similarity is that around zero
frustration the energy of a single rhombus as a function of
the phase difference across it has only one minimum �see
Fig. 2�a��. This implies the coincidence of the classification
of the classical states for our system and for the single Jo-
sephson junctions chain. In this section we present the theory
of quantum fluctuations in a nonfrustrated rhombi chain
which we used to fit the experimental data. In our analysis
we assume that the Josephson energy of the junctions is

much larger than the charging energy and quantum fluctua-
tions in individual Josephson junctions are small. However,
as we will see below, the fluctuations in the whole chain can
be strong.

Quantum fluctuations �more precisely quantum phase
slips� lead to the mixing of classical states described above.
At large EJ /EC this effect can be described within the tight-
binding approximation �cf. Ref. 7�. Classical states lie far
from each other in the configuration space and are separated
by barriers of the order EJ �see Fig. 5�. At large EJ /EC the
amplitude of quantum tunneling from state �m� to �m�� is
exponentially small and decreases fast with the increase of
the distance between �m� and �m��. For a given state �m� the
closest states in the configuration space are �m�1�. To
achieve the state �m+1� one needs to change the phase dif-
ference across the diagonal of one rhombus by 2� �at large
N, cf. Eq. �6��. Since we need to maintain the sum of the
phase differences around the rhombus �fixed by the zero flux
inside it, see Eq. �2�� we need to change by �2� the phase
differences over two junctions in different branches of the
rhombus �see Fig. 5�. Let us denote the amplitude of such a
process by �. In a semiclassical approximation this amplitude
is determined by the vicinity of the classical trajectory con-
necting states �m� and �m+1� in imaginary time

� = A exp�− S0� . �11�

Here S0 is the imaginary-time action on the classical trajec-
tory �instanton�. As it is easy to see from the preceding dis-
cussion, S0 is just twice the action describing a phase slip in
a single junction. We thus have �cf. Eq. �7� of Ref. 7 note the
difference in the definitions of EC in this paper and in Ref. 7�

S0 = 2	8EJ

EC
�12�

The coefficient A in Eq. �11� accounts for the contribution of
the trajectories close to the classical one. Standard calcula-
tion gives

A � 4.50�EJ
3EC�1/4. �13�

We can now construct the tight-binding Hamiltonian de-
scribing the effect of the phase slips on the properties of the
chain

H�m� = Em�m� + 4N��m + 1� + 4N��m − 1� . �14�

The coefficient 4 in the total tunneling matrix element is due
to the number of possible tunneling paths within one rhom-
bus while N appears here because of the fact that a phase slip
in any rhombus brings the system to the same state.

Following now the procedure described in Ref. 7 we can
reduce the problem of finding the eigenvalues of Hamil-
tonian �14� to the solution of the Mathieu equation

���x� + �a − 2q cos 2x���x� = 0, ��x + �� = ei���x� .

�15�

The parameters of the Mathieu equation are defined by

FIG. 5. �Color online� The energy landscape for one rhombus at
zero frustration �f =0� as a function of the phase differences 	1 and
	3 of Josephson junctions in opposite branches of the rhombus. The
transition of the chain from state �m� to state �m+1� corresponds to
a 2� jump of one of the diagonal rhombus phases �n. This transition
implies a simultaneous flip of the two phases 	1 and 	3, respec-
tively, by −2� and 2�. The arrow in the figure represents the cor-
responding classical trajectory. The phenomenon can also be seen
as the process of one vortex crossing the rhombus ring.
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a =
2NE

�2EJ
, q =

8N2�

�2EJ
. �16�

Here E is the energy of the rhombi chain.
Equation �15� can be solved analytically in different lim-

iting cases �see Ref. 7 for details�. By solving it numerically
and using the general relation IS= 2e

� dE /d� one can find the
current-phase relation for the rhombi chain at arbitrary fluc-
tuations’ strength. This is the exact procedure that we have
used in Sec. VI in order to fit the measured current-phase
relation for quantum chains. We found a very good agree-
ment between the theoretical predictions and the measured
data.

IV. SAMPLE FABRICATION AND CHARACTERIZATION

The samples were made by standard e-beam lithography
and shadow evaporation technique using a Raith Elphy Plus
e-beam system12 and an ultra-high-vacuum evaporation
chamber. They consist of small arrays of Al /AlOx /Al tunnel
junctions deposited on oxidized silicon substrates. The re-
spective thicknesses of the Al layers were 20 and 30 nm. The
tunnel barrier oxidation was achieved in pure oxygen at pres-
sures around 10−3 mbar during 3–5 min depending on the
sample. The samples were mounted in a portable closed cop-
per block which was thermally anchored to the cold plate of
either a He3 insert or a dilution fridge. All lines were heavily
filtered by thermocoaxial lines and � filters integrated in the
low-temperature copper block. Additional low-frequency
noise filters were placed at the top of the cryostat.

In order to measure the current-phase relation, we intro-
duced the rhombi chain in a closed superconducting loop
which contains an additional shunt Josephson junction as
shown in Fig. 6. We have measured the switching current of
this circuit. The switching current was obtained from the
switching histogram. We fixed the threshold voltage at about
one third of the shunt junction gap voltage. The histograms
were accumulated at a rate 10 KHz using a fast trigger
circuit.13 The bias current was automatically reset to zero
immediately after each switching event. The switching cur-
rent ISW corresponds, in our definition, to an escape probabil-
ity of 50%.

As the critical current of the shunt junction is much larger
than the critical current of the chain, near the switching event
the phase difference over it is close to � /2. Therefore the

flux �c changes only the phase difference � over the chain.
The switching current through the parallel circuit represented
in Fig. 6 can be written as the sum of the partial supercur-
rents in the two branches.

ISW = IS�� −
�

2
 + Ic sin��

2
 . �17�

Here, IS��� is the supercurrent in the rhombi chain and Ic is
the shunt junction critical current. Therefore the � depen-
dence of the switching current of the shunted rhombi chain
directly reflects the current-phase relation of the rhombi
chain.

The frustration inside the rhombi chain was controlled by
a constant external perpendicular magnetic field. The flux
inside the closed chain could be either applied simulta-
neously or swept independently using control lines. In the
first case the two parameters � and f are linked by the area
ratio between the rhombus and the ring �see Table I�. Since
the rhombus area is much smaller than the ring area, using
small variations of the magnetic field B we can vary the
phase � for an approximately constant value of f .

To be able to achieve reversible fine tuning of the phases,
we found it crucial to avoid any flux trapping in the vicinity
of the superconducting circuit. For this purpose the super-
conducting leads were patterned with linear open voids
which ensure free motion of vortices. Different sample de-
signs were investigated including open and closed chains.
The typical elementary junction area ranged from 0.15
�0.15 to 0.3�0.6 �m2. The Josephson energy was inferred
from the experimental tunnel resistance of individual junc-
tions and the nominal Coulomb energy was estimated from
the junction area using the standard capacitance value of

FIG. 6. Schematic of the circuit designed to measure the
current-phase relation in a rhombi chain. The chain is closed by a
superconducting line interrupted by an additional Josephson junc-
tion referred to as the “shunt junction.” An external magnetic field
B allows the control of both the rhombi frustration f and the total
phase of the closed chain �.

FIG. 7. �a� SEM image of a rhombi chain �N=8, sample C in the
closed superconducting circuit. The shunt junction is visible on the
left vertical line. �b� An enlarged image of one rhombi is also pre-
sented. �c� For small magnetic-field variations, the flux inside the
rhombi practically remains constant, while the total phase on the
array varies.
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50 fF /�m2 for aluminum junctions. In general, the mea-
sured area of the junctions was slightly smaller than ex-
pected. The actual Coulomb energy is therefore larger �by
about 20%� than its nominal value.

We designed, for this experiment, a series of samples as
shown in Fig. 7. EJ and Ec as well as the number of rhombi
were chosen near the range of the optimum parameters pre-
scribed in Ref 8. The shunt junction has a critical current
about ten times larger than the switching current of the chain.
Figure 7�c� shows a scanning electron microscope �SEM�
image of one rhombus. The actual design of the resist mask

was optimized to ensure the best homogeneity of junction
critical currents.14

We concentrate on results for three particular samples
with the following common characteristic parameters: num-
ber of rhombi N=8, rhombus area: 2�4 �m2, shunt junc-
tion: 0.15�2 �m2. Other parameters are listed in Table I.

V. CLASSICAL CHAINS

The observed dependence of the switching current ISW vs
the external magnetic flux is shown in Fig. 8. Both the

TABLE I. Characteristic parameters of the samples. For sample A, EJ was obtained from the tunnel
resistance measured on a reference open chain fabricated on the same chip. For sample B, rn �not measured�
was estimated to be similar. The charging energy was inferred from the nominal junction area. Rshunt ��� is
the tunnel resistance of the shunt junction.

Sample Ring area Rhombi junctions area Ec�K� rn��� EJ�K� EJ /Ec Rshunt

A 8�40 �m2 0.15�0.30 �m2 0.43 850 9.0 20 169

B 18�36 �m2 0.15�0.30 �m2 0.43 167

C 18�36 �m2 0.15�0.15 �m2 0.8 4860 1.6 2 627

(a)

(b)

FIG. 8. �Color online� �a� Experimental plot of the switching current vs external magnetic field at different temperatures. The sample B
was measured at the lowest temperature T=26 mK. The higher temperature measurements correspond to the sample A. �b� Magnification of
the region near rhombi frustration f =0. �c� The switching probability of the circuit rhombi chain � shunt junction �sample B� vs current bias
at different magnetic fields which correspond to the numbered points indicated in Fig. 8�b�.

POP et al. PHYSICAL REVIEW B 78, 104504 �2008�

104504-8



rhombi frustration f and the phase along the main ring � are
controlled by the magnetic field.

We observe a complex dependence of ISW as a function of
the magnetic flux with mainly one slow periodic envelop of
period 2.57 Gauss that we attribute to the frustration inside
the rhombus and one fast sawtooth oscillation that we under-
stand as the modulation of the supercurrent as a function of
the phase �. The number of periods differs for the two
samples A and B as expected from the difference between the
ring areas.

We have verified that the fast modulation is periodic with
period h /2e except near f =1 /2 where the period is h /4e �see
Fig. 8�a� and Fig. 10�b��. This result confirms precisely what
is illustrated in Fig. 3: the chain states undergo a transition
from phase periodicity 2� to periodicity � when the rhombi
are fully frustrated. Let us notice here that the half periodic-
ity is not actually visible over many periods since the control
magnetic flux changes both the frustration and the phase.
Instead, we do observe a sequence of saw teeth with unequal
amplitudes which become regular only at exactly f =1 /2. We
have confirmed the period halving in a separate experiment
where we used on-chip superconducting lines to control f
and � separately. We could observe up to 12 oscillations �not
shown� of the critical current vs � when the rhombi frustra-
tion was fixed exactly at f =1 /2 by a static magnetic field
B=1.29 gauss.

The different histograms shown in Fig. 8�c� illustrate how
the switching probability evolves within one fast period of

the ISW sawtooth. The sharpest histogram is obtained in the
middle of the linear sawtooth i.e., when the supercurrent
goes to zero �minimum of energy in the parabolic diagram
shown in Fig. 3�a��. For this point the state of the chain is
quite stable. The presence of two steps in the histogram near
the maximum or minimum of the sawtooth could be an in-
dication that the system can switch between the states �m�
and �m+1�. They reveal the crossing of energy levels be-
tween successive parabolic arcs of the energy diagram. The
whole plot evolves slightly when the criterion for the defini-
tion of the switching current is set different from 50% but the
main features are preserved. The observed behavior at 26
mK is characteristic for the zero-temperature limit. We saw
no change with increasing moderately the temperature. The
trace remained very similar except for a small change in the
vertical scale. For example at 326 mK the amplitude of the
fast oscillation was found to decrease by about 6% and 10%
for the h /2e and the h /4e components, respectively. We also
observed very rare flux jumps which manifest themselves as
discontinuities in the ISW vs � curve. Further reduction of the
oscillation amplitude was observed at higher temperature �up
to 0.8 K� together with some thermal smearing.

Practically we analyze the � dependence of the switching
current as the sum of three distinct contributions: a constant
level that can be assigned to the switching current of the
shunt junction, a fast oscillation due to the persistent current
in the large superconducting loop containing the large junc-
tion, and an additional contribution reminiscent of the
switching current of the open chain. In Fig. 9�a�, we have
extracted the fast oscillating component Is of the measured
switching current of sample A from the median line Imed
obtained by joining the middle points of each branch of the
sawtooth in Fig. 8�a�. The median line �Fig. 9�b�� is reminis-
cent of the switching current of the reference open rhombi
chain which was measured separately �Fig. 14�. The exact
cause for this resemblance is not yet understood. From the
measurements we estimate the switching current of the shunt
junction at 1.43 �A, which looks reasonable.

The fast oscillating component is shown in Fig. 9�a�. The
main features of this experimental result follow the theoret-
ical predictions summarized in Fig. 3. Since by changing the
magnetic field we vary in the same time the frustration and
the phase, we obtain supercurrent oscillations with a modu-
lated amplitude. In Fig. 9�a� we have also plotted the theo-
retical envelop Ienv �dotted lines� of the supercurrent as cal-
culated for the actual junction parameters in the classical
limit. This line is given by the maximum of the supercurrent
IS��� and except for the two small windows visible near f
= �1 /2 it is given by Ienv= ic

�
Ncos�f /2� �here N=8�. Within

the frustration window �see Eq. �9� and Fig. 10�, Ienv falls
linearly to its minimum value ic

�

2	2N
at f = �1 /2, as theoreti-

cally expected.
As it can be seen, the measured amplitude of the super-

current coincides fairly well with the classical value obtained
from the nominal critical current of the individual junctions.
It appears that the rate of quantum phase slip is too slow to
achieve the quantum superposition of classical states and
form the macroscopic 4e condensate. This is not surprising
considering that the ratio EJ /Ec=20 is significantly larger
than the optimum values calculated in Ref. 8. No rounding or

FIG. 9. �Color online� The fast oscillation component Is �a� and
the median component Imed �b� of the switching current in sample A
at T=310 mK. The plot �a� represents the supercurrent through the
chain and the plot �b� gives the additional contributions coming
from the shunt junction and the rhombi chain �see text�. The ex-
pected amplitude of the supercurrent is shown as dotted lines in
trace �a�.
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exponential weakening of the sawtoothlike supercurrent is
observed. Rather we do see the signature of the succession of
classical states forming the ground state illustrated in Fig. 3.
The same is true for sample B.

The detailed field dependence of the fast oscillation con-
tribution can be very well understood from the classical
ground state of the phase-biased rhombi chain. Figure 10
displays the experimental switching current ISW together
with the calculated supercurrent near f =1 /2 for sample B.
This sample has the largest ring area and therefore the largest
number of fast oscillations. We observe the emergence of the
half period in a frustration window 0.447 f 0.553 as ex-
pected from Eq. �9� for N=8 rhombi. Some additional sec-
ondary cusps, presumably due to flux jumps are also ob-
served in the experimental trace.

VI. QUANTUM CHAINS

In order to characterize the regime of quantum fluctua-
tions, experiments on rhombi chains with a ratio of EJ /EC
�2 were performed. The measured histograms, unlike in the
case of the classical chains, do not split into steps. Such a
behavior is expected in the case where a significantly large
gap opens in between the classical states at the cross over
point, and thus it prevents the excitation of the system. In our
case, however, the width of the histograms of �45 nA is
much larger than the amplitude of the switching current os-
cillations �see Fig. 11�. So even if there were some transi-
tions toward the first-excited state �measurement induced or

thermal excitations, noise�, the splitting of the histograms
would not be visible.

Figure 11 shows the dependence of the measured switch-
ing current as a function of the applied magnetic field. As in
the case of the classical chain, the signal can be seen as a
superposition of three components. The modulated oscillat-
ing component characterizes the dependence of the supercur-
rent of the chain as a function of both the frustration and the
phase difference �. The oscillations are periodic with period
h /2e. As we approach the frustrated regime no oscillations of
the supercurrent are measured; in the region f =1 /2 the su-
percurrent of the chain is strongly suppressed and smaller
than the �1 nA noise of our experiment.

The median component Imed, shown in Fig. 11, as in the
case of the classical chains, shows a periodic evolution as a
function of the frustration. We measure an amplitude of
about 1 nA for the Imed oscillations. The exact cause of this
periodic behavior for chains where the phase difference is
fixed, was not yet understood. We did a detailed quantitative
analysis of the current-phase relation at zero flux frustration.
Figure 12 shows the measured current-phase relation in the
nonfrustrated regime that can be perfectly fitted by the theory
described in Sec. III B. The only fitting parameter is the Jo-
sephson energy EJ

� for which we find half of the experimental
determined one. We can imagine two possible sources for
this discrepancy. First the experimental value for EJ

� has been
deduced from the normal-state resistance measurement of the
large Josephson junction �that is in parallel to the rhombi
chain� by supposing the ratio between the two resistances to
be the same than the one between the junction areas. This
assumption is not always valid in the case that oxidation can
occur differently for small junctions than for larger ones. The

FIG. 11. �Color online� In red: the experimental plot of the
switching current vs external magnetic field for the sample C at the
temperature T=280 mK. Blue points: the median component of the
switching current.

FIG. 12. �Color online� The experimental plot �red points� of the
switching current vs external magnetic field in the zero frustration
region for the sample C at T=280 mK. The line �in blue� represents
the theoretical fit which gives an effective value for the Josephson
energy EJ

�=0.5EJ.

FIG. 10. Comparison between the measured switching current
of sample B �b� and the theoretical persistent current �a� in the
classical limit �see Sec. II� near f =1 /2. The lines joining the cusps
are guides for the eyes. The vertical axis in �a� is in units of the
single junction critical current ic.
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second source of discrepancy could originate in applicability
of the theory described in Sec. III. Formally the description
presented above relies on the assumption EJ�EC. On the
other hand, even for EJ�EC the matrix � for the single tun-
neling event is much smaller than EJ. This means that we
still can describe the system with the tight-binding Hamil-
tonian �14� but the precise value of � can deviate from the
one given by Eqs. �11�–�13�.

To the best of our knowledge this result constitutes the
first experimental confirmation of the model proposed by
Matveev et al.7 for the current-phase relation in long Joseph-
son junction chains.

As we increase the applied magnetic field, the frustration
inside the rhombi modifies the value of the effective Joseph-
son energy, which becomes EJ cos��f�. Using this value, we
calculated the evolution of the critical current as a function
of the frustration f . Figure 13 presents both the results of the
calculations and the measured values for the critical current.
We can see that the model gives a quantitative description for
the measured current amplitude dependence in the nonfrus-
trated regime while it can only give a qualitative description
in the frustrated region.

VII. CONCLUSION

In this paper we have studied the properties of one-
dimensional Josephson junction chains where the elementary
cell is a rhombus made of four small tunnel junctions. In the
classical phase regime, the current-phase relation shows the
characteristic sawtoothlike variation. Its periodicity corre-
sponds to the ordinary superconducting flux quantum h /2e
when the rhombi chain is nonfrustrated and it turns to half
the flux quantum h /4e at maximum frustration. For large
EJ /EC ratio the observed current-phase relation can be well
understood from the classical ground state of the chain. The
latter consists of a sequence of successive parabolas differing
by the entrance of phase slips into the chain. Experiments on
rhombi chains in the quantum regime �EJ /EC�2� show a
significant reduction and rounding of the current-phase rela-
tion in the nonfrustrated region and a complete suppression
of the supercurrent at maximal frustration. In the nonfrus-

trated regime we were able to apply for the first time the
model proposed by Matveev et al.7 in order to successfully
fit the measured current-phase relation for an eight rhombi
quantum chain.
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APPENDIX: CHARACTERIZATION OF OPEN CHAINS

In this appendix we consider the transport properties of
current biased Josephson chains connected to external reser-
voirs. Since the chains are open, the phase condition given in
Eq. �5� does not hold. In this configuration, the switching
current of the circuit ISW corresponds to the maximum super-
current through the chain and it strongly depends on the
frustration. We have measured the current-voltage character-
istics of chains based on three different elementary cells: a
single junction, a SQUID, or a rhombus, with lengths vary-
ing from N=1 to N=64. The range of junction parameters is
the same as in the main part of this paper. Our general ob-
servations are the following:

The current-voltage characteristic of chains with large Jo-
sephson coupling energy �EJ /EC�10� is similar to that of a
single cell with a multiplicative factor N in voltage. The I-V
characteristics are strongly hysteretic and, for small N, the
switching current is close to the Ambegaokar-Baratoff
value.15 In rhombi chains, the switching current is periodic
with respect to the frustration, in particular it drops by a
factor 2 at frustration 1/2 as expected from Eq. �4�. The
SQUID chain exhibits the usual sinusoidal dependence with
full cancellation of switching current at frustration 1/2. It
behaves as a chain of single junctions which Josephson en-
ergy is tuned by the external magnetic flux. The observation
of a fully developed critical current indicates that the chains
can be seen as a series of independent cells which remain in
a metastable state of energy much higher than the ground-
state energy shown in Fig. 3�a� for the closed chain. This fact
is not surprising since the energy barrier for phase jumps is
very high in these strong chains.

Increasing the length or decreasing the Josephson cou-
pling results in a dramatic reduction of the switching current.
For example Fig. 14 shows the switching current measured
in a rhombi chain with N=8, made with identical fabrication
parameters and on the same chip as sample A �see Table I�.
The zero field switching current is about 1/3 of the
Ambegaokar-Baratoff value although the ratio EJ /EC is
large. The I-V characteristic for this class of samples is hys-
teretic except near full frustration.

FIG. 13. �Color online� In red: the measured switching current
oscillations as a function of the frustration f . The blue line gives the
theoretical prediction for the amplitude of the switching current
oscillations by using an effective value EJ

�=0.5EJ.
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A distinct behavior is found in weaker junctions �EJ /EC

10�, when the rate of thermal and quantum phase slips is
significant at the time scale of an experiment. On the same
chip we fabricated a set of chains where the elementary cell
is formed by a single Josephson junction of area 0.15
�0.3 �m2. The chains contained, respectively, 1, 4, 16 and
64 junctions. The tunnel resistances per individual junction
were found almost identical rn=3�0.2 k� which is an in-
dication of good homogeneity of the array. We observed
steplike characteristics with voltage jumps equal to the su-
perconducting gap 2�. Each jump corresponds to the switch-
ing of one junction, see Fig. 15. We identify the switching
current ISW at the first jump, i.e. when the weakest junction
runs into a voltage state. For N=16, ISW is about ten times
smaller than the expected single junction critical current.

We found the following characteristics as a function of the
chain length:

�i� The switching current reduces as the chain length N
increases: 23, 10, and 1.2 nA, respectively for N=4, 16, and
64. We also observe that ISW increases with increasing tem-
perature, indicating that the thermal fluctuations restore the
phase coherence of the chain by suppressing quantum pro-
cesses.

�ii� The hysteresis of I-V curves is suppressed in long
chains, giving rise to a regular staircase shape.

�iii� The Josephson branch becomes more and more dis-
sipative as the chain length increases. The measured zero-
bias resistances are, respectively, 40, 380, and 50 k� for
N=4, 16, and 64. Further reduction of EJ leads to the total
suppression of the Josephson coupling in the chain.

The very regular sequence of steps cannot be due to
sample inhomogeneities. We believe that the local environ-
ment of the different junctions inside the chain plays a sig-
nificant role. Preliminary experiments where a Josephson
chain was shunted by a on-chip interdigit capacitance �1 pF�
did not reveal any significant change.

Up to now we have no quantitative understanding of these
observations on open chains.
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